Skip to main content

Archive

Show more

Cooling Water System in Volvo Diesel Engine



Cooling Water System in Volvo Diesel Engine



Function

The function of the cooling water system is to transport heat energy away from the engine and accessory components to the radiator. The cooling water system consists of the coolant and the following components:

- Engine and radiator circuit

- Oil cooler circuit

- Charge air cooler circuit, water-to-air

- Expansion tank and venting circuit

The system can be extended with extra circuits:

- Torque converter oil cooler circuit

- Compressor cooler circuit

- Engine heater circuit

- Cabin heater circuit

- Coolant filter circuit





Coolant

From 2011, Volvo Penta will use the new type of coolant,VCS yellow.

The coolant has three functions:

1 To provide sufficient heat transfer.

2 To protect all cooling system metal parts from corrosion.

3 To provide sufficient protection against freezing. We recommend the use of Volvo Penta Coolant, Ready Mixedor Volvo Penta Coolant(concentrated) mixed with water. This is the only grade of coolant suitable for, and approved by, Volvo Penta. Anti-corrosion additives are not permitted in Volvo Penta engines. Never use water by itself as the coolant.



IMPORTANT! The correct mixture of coolant must be used all year round. This also applies where there is never a risk of freezing, to ensure that the engine has sufficient corrosion protection. Future warranty claims related to engine and accessories may be declined if an unsuitable coolant has been used, or if the recommendation for coolant mixture has not been followed.



Mixture ratio

WARNING!

All coolant is hazardous and harmful to the environment. Do not consume. Coolant is flammable.

IMPORTANT!

Under no circumstances may Volvo Penta coolant VCS, yellow be mixed with any other coolant.

IMPORTANT!

Industrial engines may not use coolant filters in combination with yellow VCS coolant. There filter is therefore not fitted to industrial engines filled with VCS yellow.

Mix:

40 % Volvo Penta glycol (conc. coolant)

60 % water

This mixture protects against internal corrosion, cavitation and damage from freezing down to -28 °C (-18 °F). The freezing point is lowered to -54 °C (-65 °F) with 60 % glycol in the coolant. Never mix more than 60 % concentrate (glycol) in the coolant, as this will impair protection against freezing, impair cooling ability, and result in a risk of overheating.

IMPORTANT!

The coolant must be mixed with clean water. Use distilled, deionized water. The water must comply with Volvo Penta requirements. Refer to Water Quality page 64.

IMPORTANT!

It is very important that the cooling system be filled with coolant of the correct concentration. Mix in a separate clean vessel before filling the cooling system.

Make sure the fluids are well mixed.



Engine and radiator circuit

This circuit comprises the following main components:

- Thermostat (T)

- Coolant pump (WP)

- Water ducts in the engine block and cylinder heads

- A bypass (P) between the thermostat housing and the coolant pump

- Radiator (R)

- Pipes and hoses

The radiator may in certain cases be replaced with a heat exchanger of water-to-water type.

Certain engines also have a charge air cooler in the coolant circuit, e.g. TWD engines.



Coolant pump

Coolant pumps are either belt or gearwheel-driven and are specially designed for each engine size. Pump rpm ratios for each engine are specified in the Sales Support Tool, Partner Network. The coolant pump is of centrifugal type in which oolant flow depends largely on system back pressure. If any accessory components are connected to the system, coolant flow will be reduced which means that consideration must be given to component pressure drop and the length, diameter and shape of pipes and hoses. The graph shows pump plots at different engine speeds. System coolant flow is determined at the intersection of the pump plot and the system plot, as described below. The following equations may be used to determine the pump plot for other engine speeds:
p2/p1 = (n2 / n1)2
qW2/qW1 = n2 / n1
p = static pressure (kPa)
qW = Coolant flow (I/s)
n = engine speed (rpm)
Use the values p1 and qW1 from a point on the existing engine speed plot n1. Calculate p2 and qW2 at the new engine speed n2 and plot this point in the graph. Repeat the procedure for a few other points on the n1 plot and draw the new pump plot through the calculated points.

The system plot describes the pressure drop through the system to which the coolant pump is connected.
The system plot uses the following formula:
p = k × qw
k = is a system-dependent constant and is used to draw the system plot as described in the instructions above.

The plot for the pressure drop (1) across the engine is drawn in the pump graph. This plot shows the pressure drop in the engine cooling ducts from the pump inlet to the upper engine outlet. The plot applies to a fully-open thermostat where the pressure drop across the oil cooler and a water-to-air charge air cooler (TWD engines) is included. The pressure drop across the external circuit must be added to engine pressure drop to determine the entire system plot. The external circuit usually comprises a radiator and hoses but there may also be a torque converter oil cooler.

Comments

Popular posts from this blog

New Yuchai engine YC6K600-D30 power for diesel generator 50Hz

Yuchai Is Super Confident in Its Innovation

Founded in 1951, with 30 wholly-owned, holding and joint-stock subsidiaries, Guangxi Yuchai Machinery Group Co., Ltd. (hereinafter referred to as the Yuchai Group) is an internal combustion engine manufacturing base with the most complete spectrum of products in the country. In recent years, machinery manufacturing industry has been dropped off influenced by domestic and foreign economic situations, especially domestic overcapacity and unreasonable product structure. Reversely, Yuchai has sold over 3 million engines with the annualized revenues amount to RMB 40 billion. Over the years, as China ’ s largest engine R&D manufacturing base, Yuchai adjusts and optimizes its industrial structure and constantly strengthens its capacity for independent innovation. Therefore, the key technology continues to be the top in the sector for further keeping its own top leader in the industry. Innovation-Driven In 2013, seven world-class diesel-engine products for high-s...

Technical Parameters of Boduan 500KW Weichai Generator Set 6M33D572E200

  The 6M33D633E200 diesel engine is a special-purpose diesel engine for land-based power generation in the M33 series. It is a new-structure power generation diesel engine with a centrally - located turbocharger developed by Weichai Power Co., Ltd. in 2016. Continuous Power (COP): The maximum power at which the diesel engine can run continuously under a constant load with no limit on the annual operating hours. It is the ISO standard power. Prime Power (PRP): The maximum power at which the diesel engine can run continuously under variable loads with no limit on the annual operating hours. It is an ISO standard power that allows a 10% overload. Standby Power (ESP): The maximum power in a certain variable - power series that the diesel engine can operate for up to 200 hours per year. It is an ISO standard power with limited fuel consumption.   Operating Conditions and Applications of Baudouin  500KW Weichai Generator Set  Diesel Engine Power Classification Operating Co...