Skip to main content

Archive

Show more

Cooling Water System in Volvo Diesel Engine



Cooling Water System in Volvo Diesel Engine



Function

The function of the cooling water system is to transport heat energy away from the engine and accessory components to the radiator. The cooling water system consists of the coolant and the following components:

- Engine and radiator circuit

- Oil cooler circuit

- Charge air cooler circuit, water-to-air

- Expansion tank and venting circuit

The system can be extended with extra circuits:

- Torque converter oil cooler circuit

- Compressor cooler circuit

- Engine heater circuit

- Cabin heater circuit

- Coolant filter circuit





Coolant

From 2011, Volvo Penta will use the new type of coolant,VCS yellow.

The coolant has three functions:

1 To provide sufficient heat transfer.

2 To protect all cooling system metal parts from corrosion.

3 To provide sufficient protection against freezing. We recommend the use of Volvo Penta Coolant, Ready Mixedor Volvo Penta Coolant(concentrated) mixed with water. This is the only grade of coolant suitable for, and approved by, Volvo Penta. Anti-corrosion additives are not permitted in Volvo Penta engines. Never use water by itself as the coolant.



IMPORTANT! The correct mixture of coolant must be used all year round. This also applies where there is never a risk of freezing, to ensure that the engine has sufficient corrosion protection. Future warranty claims related to engine and accessories may be declined if an unsuitable coolant has been used, or if the recommendation for coolant mixture has not been followed.



Mixture ratio

WARNING!

All coolant is hazardous and harmful to the environment. Do not consume. Coolant is flammable.

IMPORTANT!

Under no circumstances may Volvo Penta coolant VCS, yellow be mixed with any other coolant.

IMPORTANT!

Industrial engines may not use coolant filters in combination with yellow VCS coolant. There filter is therefore not fitted to industrial engines filled with VCS yellow.

Mix:

40 % Volvo Penta glycol (conc. coolant)

60 % water

This mixture protects against internal corrosion, cavitation and damage from freezing down to -28 °C (-18 °F). The freezing point is lowered to -54 °C (-65 °F) with 60 % glycol in the coolant. Never mix more than 60 % concentrate (glycol) in the coolant, as this will impair protection against freezing, impair cooling ability, and result in a risk of overheating.

IMPORTANT!

The coolant must be mixed with clean water. Use distilled, deionized water. The water must comply with Volvo Penta requirements. Refer to Water Quality page 64.

IMPORTANT!

It is very important that the cooling system be filled with coolant of the correct concentration. Mix in a separate clean vessel before filling the cooling system.

Make sure the fluids are well mixed.



Engine and radiator circuit

This circuit comprises the following main components:

- Thermostat (T)

- Coolant pump (WP)

- Water ducts in the engine block and cylinder heads

- A bypass (P) between the thermostat housing and the coolant pump

- Radiator (R)

- Pipes and hoses

The radiator may in certain cases be replaced with a heat exchanger of water-to-water type.

Certain engines also have a charge air cooler in the coolant circuit, e.g. TWD engines.



Coolant pump

Coolant pumps are either belt or gearwheel-driven and are specially designed for each engine size. Pump rpm ratios for each engine are specified in the Sales Support Tool, Partner Network. The coolant pump is of centrifugal type in which oolant flow depends largely on system back pressure. If any accessory components are connected to the system, coolant flow will be reduced which means that consideration must be given to component pressure drop and the length, diameter and shape of pipes and hoses. The graph shows pump plots at different engine speeds. System coolant flow is determined at the intersection of the pump plot and the system plot, as described below. The following equations may be used to determine the pump plot for other engine speeds:
p2/p1 = (n2 / n1)2
qW2/qW1 = n2 / n1
p = static pressure (kPa)
qW = Coolant flow (I/s)
n = engine speed (rpm)
Use the values p1 and qW1 from a point on the existing engine speed plot n1. Calculate p2 and qW2 at the new engine speed n2 and plot this point in the graph. Repeat the procedure for a few other points on the n1 plot and draw the new pump plot through the calculated points.

The system plot describes the pressure drop through the system to which the coolant pump is connected.
The system plot uses the following formula:
p = k × qw
k = is a system-dependent constant and is used to draw the system plot as described in the instructions above.

The plot for the pressure drop (1) across the engine is drawn in the pump graph. This plot shows the pressure drop in the engine cooling ducts from the pump inlet to the upper engine outlet. The plot applies to a fully-open thermostat where the pressure drop across the oil cooler and a water-to-air charge air cooler (TWD engines) is included. The pressure drop across the external circuit must be added to engine pressure drop to determine the entire system plot. The external circuit usually comprises a radiator and hoses but there may also be a torque converter oil cooler.

Comments

Popular posts from this blog

Components of Cummins PT Fuel System

When it comes to Cummins generator, it is well known that the gensets have good quality, low fuel consumption, low noise, big output power and reliable performance. The reliable stability, economy, power performance, durability and environmental safety is welcomed by customers. In last article, we talk about CCEC Cummins diesel engines operating principles. Well, in this article, you will learn what are the major components of its PT Fuel System. Fuel System The PT fuel system is used exclusively on Cummins Diesels. The identifying letters, “ PT ” are an abbreviation for “ pressure-time ” . The operation of the Cummins PT Fuel System is based on the principle that the volume of liquid flow is proportionate to the fluid pressure, the time allowed to flow and the passage size through which the liquid flows. To apply this simple principle to the Cummins PT Fuel System , it is necessary to provide: 1. A fuel pump. 2. A means of controlling pressure of

Leroy-Somer Alternator AVR R450

1 - GENERAL INFORMATION of Leroy-Somer Alternator AVR R450 1.1 - Description The R450 AVR is supplied in a casing designed to be mounted on a panel with dampers. - Operating temperature: - 30°C to + 65°C. - Storage temperature: - 55°C to + 85°C. - Shocks on the base: 9 g depending on the 3 axes. - Vibrations: less than 10 Hz, 2 mm half-peak amplitude 10 Hz to 100 Hz: 100 mm/s, above 100 Hz: 8 g. The AVR is IP00, it must be incorporated in an environment which ensures it a IP20 protection. 1.2 - Characteristic The connection is realised by “Faston” connectors and the voltage sensing is single - phase. 2 - POWER SUPPLY Both the SHUNT/AREP & PMG excitation systems are controlled by the AVR. 2.1 - AREP excitation system With AREP excitation, the electronic AVR is powered by two auxiliary windings which are independent of the voltage sensing circuit. The first winding has a voltage proportional to the   alternator   main voltage (Shunt characteristic),

New Yuchai engine YC6K600-D30 power for diesel generator 50Hz