Skip to main content

Archive

Show more

Volvo Cooling System Design




Volvo Cooling System Design

Summary of System Design



The following points must be given extra thorough consideration when designing a cooling system:



The maximum ambient temperature the engine must operate in.

Cooling air flow direction, i.e. if a puller or pusher fan is to be used. A pusher fan is recommended for generator sets to avoid generator overheating. On mobile applications, consideration must be give to any slipstream.

Engine heat radiation causes a rise in cooling air temperature in pusher fan systems.

Generator heat contribution is 7-10 % of net Volvo engine power.

Additional coolers in front of the radiator (puller fan) or behind the radiator (pusher fan) will

cause a rise in cooling air temperature and a reduction in airflow.

The radiator may become clogged in dusty environments, which will impair cooling capacity.

The radiator must be installed so that it can easily be cleaned. Grilles / filters are available

as options.

There must be as few obstacles to cooling air flow as possible. The design of air ducts, grille

and engine compartment is important.



Hot air recirculation will impair cooling capacity significantly and must be prevented by sealing.

Where accessory components such as a torque converter oil cooler are connected to the coolant system, it is necessary to know the cooling requirement for such components.

Consideration must be given to the altitude above sea level at the location where the engine

will be used, as ATB is reduced by around 1.4 °C (34.5 °F) at 300 m (984 ft.)

If it is necessary to increase cooling capacity, it must be done in the first instance by using a

larger radiator and improving cooling air flow.





Important to bear in mind regarding the coolant circuit

Coolant flow and external circuit sensitivity to pressure drop. One extremely critical parameter when designing a cooling system is coolant flow. The pressure in the coolant system, which the pump works against, is linear to the amount of coolant that must circulate. When the thermostat opens back pressure increases and flow drops. Therefore, do not increase the external coolant system beyond the permissible maximum volumes specified in the technical data for each individual engine.



Also refer to technical data/cooling system

Cooling effect and maximum cooling temperature. Refer to technical data/cooling system

heat rejection from engineand Maximum top tank temperature

Static main pressure. Refer to technical data/cooling system

maximum static main pressureand minimum static main pressure

Expansion tank volume. The total amount of coolant used in the system affects the appropriate size of the expansion tank. Minimum expansion tank size is 18 % of the total coolant volume.

Refer to the expansion tank chapter

Venting.

Refer to the venting, nipples, pipes and hoses chapter

Pipe and hose quality Refer to the radiator, pipes and hoses chapter.





Important to bear in mind regarding the charge air circuit

Charge air temperature and cooling capacity. Engine charge air temperature should be as low

as possible. This is beneficial for fuel consumption and increases total engine service life. (lower stress effects from heat at maximum load points). Therefore pay attention to the need for effective cooling.

Pressure drop across the charge air system. Refer to technical data/cooling system/charge

air system

Load take-up. Be aware that the increase in air volume created by extending the charge air pipes will have a drastically negative effect on load take-up.

Pipe runs and installation (clamps). Refer to the charge air cooler chapter



Induction System



General

The air inlet system is one of the most important parts of the engine installation as it is able to directly affect engine power, fuel consumption, exhaust emissions and engine service life. Bearing this in mind the air inlet system must be designed so that it is able to provide the engine with clean, dry, cold air with the smallest possible flow limitation. The system must also be designed to cope with the shock loads and operating conditions that occur during use. It must also provide reliable sealing and durability.







Air Inlet System

The air inlet system consists of three main components:

- Air inlet - before filter

- Air cleaner

- Air inlet - after filter

Inlet pipe, before filter

The air inlet must be installed in a location

- that has the lowest possible dust concentration

- where the temperature is as close to ambient air temperature as possible

- and which is protected from water splashes

The inlet must be protected against rain and snow. Make sure it is not possible for exhaust gases to be drawn in to the air inlet system. The air inlet pipe must be designed so that pressure drop is minimized. A small pressure drop extends filter service life. The basic guidelines for achieving a low pressure drop involve using large pipes with as few short-radius bends as possible. A water lock must be designed in the lower section of the pipe and/or where it bends upwards. The water lock must be drainable. The filter housing must also be drainable. Installation, Induction System





Cleaner Type

Air cleaner

Air cleaners protect engines against airborne contaminants that cause serious engine wear through their abrasive effect. Air cleaners can be divided into three basic types:

- pre-cleaner

- primary cleaner

- secondary element

Pre-cleaner

The function of the pre-cleaner is to remove the major part of airborne dirt from inlet air and to extend primary element service life. Pre-cleaners work by forcing air to rotate thus separating

the dust from the air. There are two main types of pre-cleaner:

- multi-cyclone filters installed in the air inlet

- stators installed in the filter housing

Volvo Penta recommends the use of pre-cleaners in dusty environments.














Comments

Popular posts from this blog

Components of Cummins PT Fuel System

When it comes to Cummins generator, it is well known that the gensets have good quality, low fuel consumption, low noise, big output power and reliable performance. The reliable stability, economy, power performance, durability and environmental safety is welcomed by customers. In last article, we talk about CCEC Cummins diesel engines operating principles. Well, in this article, you will learn what are the major components of its PT Fuel System. Fuel System The PT fuel system is used exclusively on Cummins Diesels. The identifying letters, “ PT ” are an abbreviation for “ pressure-time ” . The operation of the Cummins PT Fuel System is based on the principle that the volume of liquid flow is proportionate to the fluid pressure, the time allowed to flow and the passage size through which the liquid flows. To apply this simple principle to the Cummins PT Fuel System , it is necessary to provide: 1. A fuel pump. 2. A means of controlling pressure of

Leroy-Somer Alternator AVR R450

1 - GENERAL INFORMATION of Leroy-Somer Alternator AVR R450 1.1 - Description The R450 AVR is supplied in a casing designed to be mounted on a panel with dampers. - Operating temperature: - 30°C to + 65°C. - Storage temperature: - 55°C to + 85°C. - Shocks on the base: 9 g depending on the 3 axes. - Vibrations: less than 10 Hz, 2 mm half-peak amplitude 10 Hz to 100 Hz: 100 mm/s, above 100 Hz: 8 g. The AVR is IP00, it must be incorporated in an environment which ensures it a IP20 protection. 1.2 - Characteristic The connection is realised by “Faston” connectors and the voltage sensing is single - phase. 2 - POWER SUPPLY Both the SHUNT/AREP & PMG excitation systems are controlled by the AVR. 2.1 - AREP excitation system With AREP excitation, the electronic AVR is powered by two auxiliary windings which are independent of the voltage sensing circuit. The first winding has a voltage proportional to the   alternator   main voltage (Shunt characteristic),

New Yuchai engine YC6K600-D30 power for diesel generator 50Hz