Skip to main content

Archive

Show more

Working Principle of Fuel Injection System



Working Principle of Fuel Injection System

For the engine to run smoothly and efficiently it needs to be provided with the right quantity of fuel/air mixture according to its wide range of demands.

Traditionally, the fuel/air mixture is controlled by the carburettor, an instrument that is by no means perfect.

Its major disadvantage is that a single carburettor supplying a four-cylinder engine cannot give each cylinder precisely the same fuel/air mixture because some of the cylinders are further away from the carburettor than others.

One solution is to fit twin-carburettors, but these are difficult to tune correctly. Instead, many cars are now being fitted with fuel-injected engines where the fuel is delivered in precise bursts. Engines so equipped are usually more efficient and more powerful than carburetted ones, and they can also be more economical, as well as having less poisonous emissions.

Diesel fuel injection
The fuel injection system in petrolengined cars is always indirect, petrol being injected into the inlet manifold or inlet port rather than directly into the combustion chambers. This ensures that the fuel is well mixed with the air before it enters the chamber.

Many diesel engines, however, use direct injection in which the diesel is injected directly into the cylinder filled with compressed air. Others use indirect injection in which the diesel fuel is injected into the specially shaped pre-combustion chamber which has a narrow passage connecting it to the cylinder head.

Only air is drawn into the cylinder. It is heated so much by compression that atomized fuel injected at the end of the compression stroke self-ignites.

Basic injection
All modern petrol injection systems use indirect injection. A special pump sends the fuel under pressure from the fuel tank to the engine bay where, still under pressure, it is distributed individually to each cylinder.

Depending on the particular system, the fuel is fired into either the inlet manifold or the inlet port via an injector. This works much like the spray nozzle of a hose, ensuring that the fuel comes out as a fine mist. The fuel mixes with the air passing through the inlet manifold or port and the fuel/air mixture enters the combustion chamber.

Some cars have multi-point fuel system where each cylinder is fed by its own injector. This is complex and can be expensive. It's more common to have single-point injection where a single injector feeds all the cylinders, or to have one injector to every two cylinders.

Injectors
The injectors through which the fuel is sprayed are screwed, nozzle-first, into either the inlet manifold or the cylinder head and are angled so that the spray of fuel is fired towards the inlet valve.

The injectors are one of two types, depending on the injection system. The first system uses continuous injection where the fuel is squirted into the inlet port all the time the engine is running. The injector simply acts as a spray nozzle to break up the fuel into a fine spray - it doesn't actually control the fuel flow. The amount of fuel sprayed is increased or decreased by a mechanical or electrical control unit - in other words, it is just like turning a tap on and off.

The other popular system is timed injection (pulsed injection) where the fuel is delivered in bursts to coincide with the induction stroke of the cylinder. As with continuous injection, timed injection can also be controlled either mechanically or electronically.

The earliest systems were mechanically controlled. They are often called petrol injection (PI for short) and the fuel flow is controlled by a mechanical regulator assembly. These systems suffer from the drawbacks of being mechanically complex and having poor response to backing off the throttle.

Mechanical systems have now been largely superseded by electronic fuel injection (known as EFi for short). This is thanks to the increasing reliability and decreasing costs of electronic control systems.

Types of fuel injector
Injectorbody
Spring
Fuel spraysout
A mechanical fuel injector
Two main types of injector can be fitted, depending on whether the injection system is mechanically or electronically controlled.

In a mechanical system, the injector is spring-loaded into the closed position and is opened by fuel pressure.

Electricalconnection
Injectorbody
Electromagnet
Spring
Nozzle
An electronic injector
The injector in an electronic system is also held closed by a spring, but is opened by an electromagnet built into the injector body. The electronic control unit determines how long the injector stays open.

Mechanical fuel injection


Mechanical fuel injection was used in the 1960s and 1970s by many manufacturers on their higher-performance sports cars and sports saloons. One type fitted to many British cars, including the Triumph TR6 PI and 2500 PI, was the Lucas PI system, which is a timed system.

A high-pressure electric fuel pump mounted near the fuel tank pumps fuel at a pressure of 100psi up to a fuel accumulator. This is basically a short-term reservoir that keeps the fuel-supply pressure constant and also irons out the pulses of fuel coming up from the pump.

From the accumulator, the fuel passes through a paper element filter and then feeds into the fuel-metering control unit, also known as the fuel distributor. This unit is driven from the camshaft and its job, as the name suggests, is to distribute the fuel to each cylinder, at the correct time and in the correct amounts.

The amount of fuel injected is controlled by a flap valve located in the engine's air intake. The flap sits beneath the control unit and rises and falls in response to airflow - as you open the throttle, the 'suck' from the cylinders increases the airflow and the flap rises. This alters the position of a shuttle valve within the metering control unit to allow more fuel to be squirted into the cylinders.

From the metering unit, the fuel is delivered to each of the injectors in turn. The fuel then squirts out into the inlet port in the cylinder head. Each injector contains a spring-loaded valve that is kept closed by its spring pressure. The valve only opens when the fuel is squirted in.

For cold starting, you cannot just block off part of the airflow to enrich the fuel/air mixture as you can with a carburettor. Instead a manual control on the dash (resembling a choke knob) or, on later models, a microprocessor alters the position of the shuttle valve within the metering unit. This activates an extra injector mounted in the manifold, causing it to squirt in extra fuel to enrich the mixture.



Comments

Popular posts from this blog

1250kVA Yuchai Electric Power Diesel Generator Powered by Yuchai YC12VC1...

How to Properly Install Diesel Engine

Installing diesel engine is an important part for engine operation. No matter what will you use the engine for, the first thing is to install it on the machine you want to use. Installation of diesel engine is not an easy thing that everyone can do. How to install engine properly is a point for many users to learn. Moreover, properly installing engine is crucial because any mistaken installation step could lead to engine damage and personal hurt. One of the largest challenges of the engine re - manufacturing business is often associated with improper engine installation. We all know that everyone reads all of the literature that comes with each remain  engine – right? Even after reading all of the paperwork technicians still seem to find creative ways to damage the engines performance and longevity. Enough humor – this article will discuss basic diesel engine installation  and how you can prevent premature engine failures. Imagine the most beautiful remanufacture...

High Quality New 800kw Generators