Skip to main content

Archive

Show more

Introduction of Engine Control Module Function


Introduction of Engine Control Module Function

The engine control module basically controls the intersection of the engine's necessary ingredients to make energy -- fuel, air and spark. That sounds simple, kind of in the same way an engine itself sounds simple if you break it down into really basic terms. But the ECM accomplishes its considerable chore by constantly monitoring a vast network of sensors around the car to ensure conditions are within normal operating range. When something goes wrong, the ECM adjusts conditions or, if it can't, the car won't run properly or at all. When there's a problem, the ECM stores a trouble code so it can be diagnosed by a mechanic (with a scanner specifically designed for that purpose) and triggers the check engine light so the driver knows something's wrong.
Newer engine computer systems also feature lightweight, low-cost memory systems that can be easily accessed by the dealership to fix programming issues and update specifications (kind of like running a system or software update on your computer).

One of the most recent tasks (in the last decade or so, anyway) delegated to the engine computer came about only as automotive companies switched from mechanical throttle control to electronic throttle control. Previously, when your foot made contact with the gas pedal, it was connected to a cable that went directly to the engine so the engine could decide how much fuel to inject, based on whether you caressed the pedal, mashed it to the floor, or most likely, somewhere in between. Now, an electronic sensor at or near the gas pedal sends a signal via electrical wire to the engine management system, which evaluates your throttle contact and then sends a signal to the engine to adjust fuel dosage.

Part of the ECM's start-up procedure is to calibrate the position of the throttle at idle -- in other words, remind itself, and the throttle, how the engine should run when it's not being given any gas. This helps control and prevent an uneven idle. If all the sensors involved don't agree on the right position, the computer will send a signal to the engine and transmission to run in Limp Mode (preventing the driver from achieving high speeds that could get out of hand) and also sends an alert to the instrument cluster. The idea is to allow it to run well enough to get to a repair shop, but not strand you on the side of the road.

The ECM also makes sure the car meets emissions standards, by monitoring and regulating the fuel mixture to ensure the engine isn't running too rich and emitting pollutants beyond the established parameters. And with all those sensors already in place, the ECM is often responsible for managing features like anti-skid brakes, cruise control and theft protection.

That sounds like a lot to keep straight, doesn't it? So, on top of it all, the engine control module, unit, or what have you, runs through a recalibration test every time you turn on the car, just to make sure signals don't get crossed.













Comments

Popular posts from this blog

Yuchai Is Super Confident in Its Innovation

Founded in 1951, with 30 wholly-owned, holding and joint-stock subsidiaries, Guangxi Yuchai Machinery Group Co., Ltd. (hereinafter referred to as the Yuchai Group) is an internal combustion engine manufacturing base with the most complete spectrum of products in the country. In recent years, machinery manufacturing industry has been dropped off influenced by domestic and foreign economic situations, especially domestic overcapacity and unreasonable product structure. Reversely, Yuchai has sold over 3 million engines with the annualized revenues amount to RMB 40 billion. Over the years, as China ’ s largest engine R&D manufacturing base, Yuchai adjusts and optimizes its industrial structure and constantly strengthens its capacity for independent innovation. Therefore, the key technology continues to be the top in the sector for further keeping its own top leader in the industry. Innovation-Driven In 2013, seven world-class diesel-engine products for high-s...

How to Read Alarm Codes From SmartGen Genset Controller

Auto Module Control Panel is the configuration for nobody on duty controlling generators. This kind of panel adopts auto module control system, with large LCD display to show the menu, such as SmartGen controller. Features:   1. SmartGen 6110 can receive remote output signal from ATS and realize auto start and stop of generators. 2. SmartGen 6310 can realize all functions of 6110, add RS232 interface which can communicate with PC to realize remote operation.  3. SmartGen 6410 Auto Mains Failure controller, can realize all functions of 6310, furthermore can detect  ATS and control directly. The alarm of diesel generator controller is not the amount of stop alarm, which does not affect the normal operation of diesel generator. When the alarm occurs, the unit will not stop, and when the alarm conditions do not exist, the amount of warning will automatically disappear.  Today Starlight manufacturer mainly shares alarm codes for diesel generato...

How to know and solve faults of genset voltage transformer

 Today Starlight Power shares the common faults for voltage transformer of diesel generator set. Hope it is helpful to you. 1) The insulation between iron chips is damaged. Fault phenomenon: temperature rises during operation. The possible causes of the failure are: poor insulation between iron chips, bad use of environmental conditions or long-term operation under high temperature, which promote the insulation aging between iron chips. (2) Poor contact between grounding plate and iron core. Fault phenomenon: there is discharge sound between iron core and oil tank during operation. Cause of failure: the grounding plate is not inserted tightly, and the mounting screw is not tightened. (3) The iron core is loose. Fault phenomenon: abnormal vibration or noise during operation. The cause of failure: the iron core clamp is not clamped, and the iron chip is loose. (4) Turn to turn short circuit of winding. Fault phenomenon: during operation, the temperature rises, there is ...